FAIRCHILD

SEMICONDUCTOR

100354 Low Power 8-Bit Register with Cut-Off Drivers

General Description

The 100354 contains eight D-type edge triggered, master/ slave flip-flops with individual inputs (D_n) , true outputs (Q_n) , a clock input (CP), an output enable pin (\overline{OEN}), and a common clock enable pin (\overline{CEN}). Data enters the master when CP is LOW and transfers to the slave when CP goes HIGH. When the \overline{CEN} input goes HIGH it overrides all other inputs, disables the clock, and the Q outputs maintain the last state.

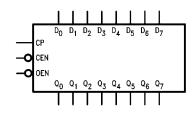
A Q output follows its D input when the \overline{OEN} pin is LOW. A HIGH on \overline{OEN} holds the outputs in a cut-off state. The cutoff state is designed to be more negative than a normal ECL LOW level. This allows the output emitter-followers to turn off when the termination supply is -2.0V, presenting a high impedance to the data bus. This high impedance reduces termination power and prevents loss of low state noise margin when several loads share the bus.

October 1989

Revised August 2000

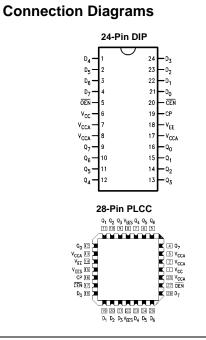
The 100354 outputs are designed to drive a doubly terminated 50 Ω transmission line (25 Ω load impedance). All inputs have 50 k Ω pull-down resistors.

Features

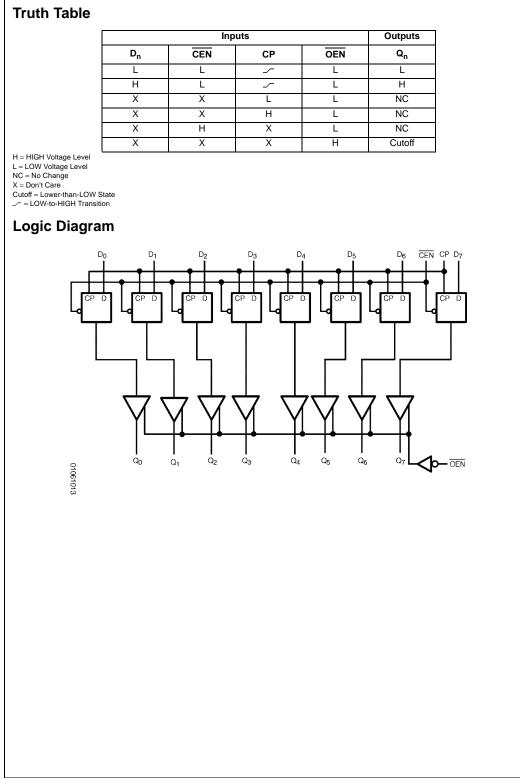

- Cut-off drivers
- Drives 25Ω load
- Low power operation
- 2000V ESD protection
- Voltage compensated operating range = -4.2V to -5.7V
- Available to industrial grade temperature range

Ordering Code:

Order Number	Package Number	Package Description
100354PC	N24E	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide
100354QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
100354QI		28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Industrial Temperature Range (–40°C to +85°C)


Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol


Pin Descriptions

Pin Names	Description
D ₀ -D ₇	Data Inputs
CEN	Clock Enable Input
CP	Clock Input (Active Rising Edge)
OEN	Output Enable Input
Q ₀ –Q ₇	Data Outputs

© 2000 Fairchild Semiconductor Corporation DS010610

Absolute Maximum Ratings(Note 1)

Storage Temperature (T _{STG})
Maximum Junction Temperature (T_J)
V _{EE} Pin Potential to Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)
ESD (Note 2)

 $\begin{array}{c} -65^{\circ}\text{C to} +150^{\circ}\text{C} \\ +150^{\circ}\text{C} \\ -7.0\text{V to} +0.5\text{V} \\ \text{V}_{\text{EE}} \text{ to} +0.5\text{V} \\ -100 \text{ mA} \\ \geq 2000\text{V} \end{array}$

Recommended Operating Conditions

Case Temperature (T _C)	
Commercial	0°C to +85°C
Industrial	$-40^{\circ}C$ to $+85^{\circ}C$
Supply Voltage (V _{EE})	-5.7V to -4.2V

100354

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics (Note 3)

$\mathsf{V}_{EE}=-4.2\mathsf{V}$ to $-5.7\mathsf{V},\,\mathsf{V}_{CC}=\mathsf{V}_{CCA}=GND,\,\mathsf{T}_{C}=0^{\circ}\mathsf{C}$ to $+85^{\circ}\mathsf{C}$ Symbol Parameter Conditions Min Тур Max Units Output HIGH Voltage -1025 -870 -955 Vон VIN =VIH (Max) Loading with mV Output LOW Voltage -1830 -1705 -1620 or V_{IL (Min)} 25Ω to -2.0V V_{OL} VOHC Output HIGH Voltage -1035 $V_{IN} = V_{IH (Min)}$ Loading with mV VOLC Output LOW Voltage -1610 or VIL (Max) 25 Ω to –2.0V OEN = HIGH Volz Cutoff LOW Voltage -1950 mV $V_{IN} = V_{IH}$ (Min) or V_{IL} (Max) -870 Guaranteed HIGH Signal for All Inputs VIH Input HIGH Voltage -1165 m٧ V_{IL} Input LOW Voltage -1830 -1475 mV Guaranteed LOW Signal for All Inputs Input LOW Current 0.50 $V_{IN} = V_{IL (Min)}$ Ι_{ΙL} μА $V_{IN} = V_{IH} (Max)$ Input HIGH Current 240 μΑ $I_{\rm H}$ IEE Power Supply Current Inputs Open -202 -105 mΑ $V_{EE} = -4.2V$ to -4.8V $V_{EE} = -4.2V$ to -5.7V-209 -105

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

100354

Commercial Version (Continued) DIP AC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter		$\mathbf{T}_{\mathbf{C}} = 0^{\circ}\mathbf{C}$		$T_{C} = +25^{\circ}C$		$T_{C} = +85^{\circ}C$		Units	Conditions
			Min	Max	Min	Max	Min	Max	Units	conditions
f _{MAX}	Toggle Frequency		250		250		250		MHz	Figures 1, 4
t _{PLH}	Propagation Delay		1.40	3.00	1.40	3.00	1.50	3.10	ns	Figures 1, 4
t _{PHL}	CP to Output		1.40	3.00	1.40	3.00	1.50	3.10		(Note 4)
t _{PZH}	Propagation Delay		1.60	4.20	1.60	4.20	1.60	4.20		Figures 3, 7
t _{PHZ}	OEN to Output		1.00	2.70	1.00	2.70	1.00	2.70	ns	(Note 4)
t _{TLH}	Transition Time		0.45	2.00	0.45	2.00	0.45	2.00	ns	Figures 1, 4
t _{THL}	20% to 80%, 80% to 20%		0.45	2.00	0.45	2.00	0.45	2.00	115	1 iguies 1, 4
t _S	Setup Time									
	D _n		1.10		1.10		1.10			
	CEN (Disable Time)		0.40		0.40		0.40		ns	Figures 2, 5
	CEN (Release Time)		1.10		1.10		1.10			
t _H	Hold Time		0.10		0.10		0.10		ns	Figures 1, 6
		Dn	0.10		0.10		0.10		115	1 190105 1, 0
t _{PW} (H)	Pulse Width HIGH		2.00		2.00		2.00		ns	Figures 1, 4
		CP	2.00		2.00		2.00		115	rigules 1, 4

Note 4: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

PLCC AC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	$T_C = 0^{\circ}C$		$T_C = +25^{\circ}C$		$T_C = +85^{\circ}C$		Units	Conditions
Symbol		Min	Max	Min	Max	Min	Max	Units	Conditions
f _{MAX}	Toggle Frequency	250		250		250		MHz	Figures 1, 4
t _{PLH}	Propagation Delay	1.40	2.80	1.40	2.80	1.50	2.90	ns	Figures 1, 4
t _{PHL}	CP to Output	1.40	2.00	1.40	2.00	1.50	2.90	115	(Note 5)
t _{PZH}	Propagation Delay	1.60	4.00	1.60	4.00	1.60	4.00	ns	Figures 3, 7
t _{PHZ}	OEN to Output	1.00	2.50	1.00	2.50	1.00	2.50	115	(Note 5)
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.45	1.90	0.45	1.90	0.45	1.90	ns	Figures 1, 4
t _S	Setup Time								
	D _n	1.00		1.00		1.00			
	CEN (Disable Time)	0.30		0.30		0.30		ns	Figures 2, 5
	CEN (Release Time)	1.00		1.00		1.00			
t _H	Hold Time D _n	0.00		0.00		0.00		ns	Figures 1, 6
t _{PW} (H)	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figures 1, 4
t _{OSHL}	Maximum Skew Common Edge								
	Output-to-Output Variation		280		280		280	ps	(Note 6)
	Clock to Output Path								
t _{OSLH}	Maximum Skew Common Edge								
	Output-to-Output Variation		340		340		340	ps	(Note 6)
	Clock to Output Path								
t _{OST}	Maximum Skew Opposite Edge								
	Output-to-Output Variation		340		340		340	ps	(Note 6)
	Clock to Output Path								
t _{PS}	Maximum Skew								
	Pin (Signal) Transition Variation		250		250		250	ps	(Note 6)
	Clock to Output Path								

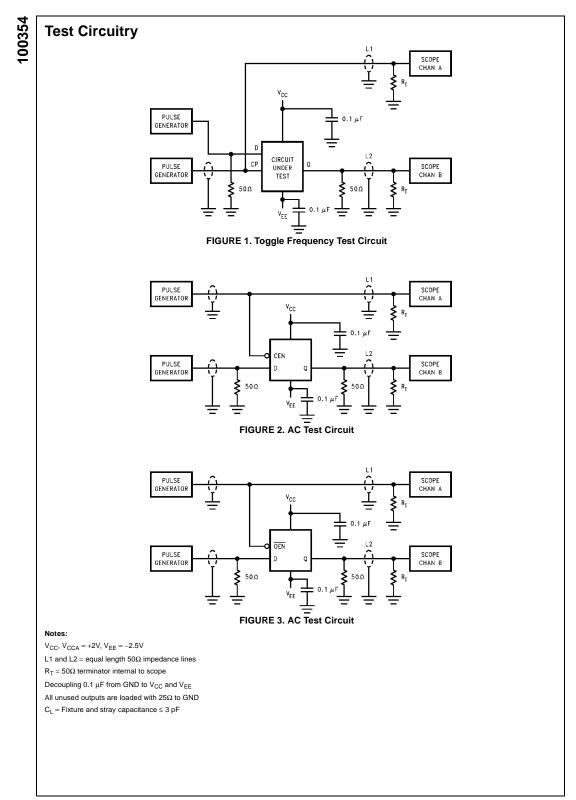
Note 5: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Note 6: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (t_{OSHL}), or LOW-to-HIGH (t_{OSLH}), or in opposite directions both HL and LH (t_{OST}). Parameters t_{OST} and t_{PS} guaranteed by design.

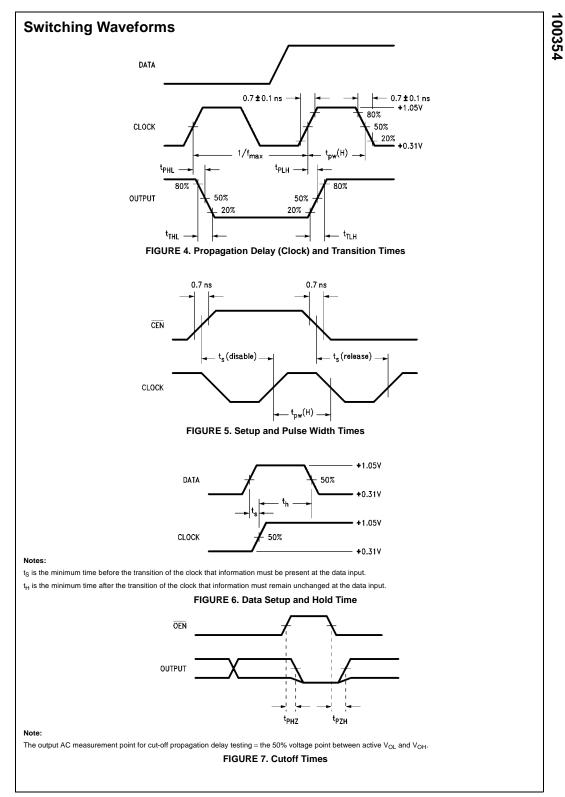
PLCC DC Electrical Characteristics (Note 7)

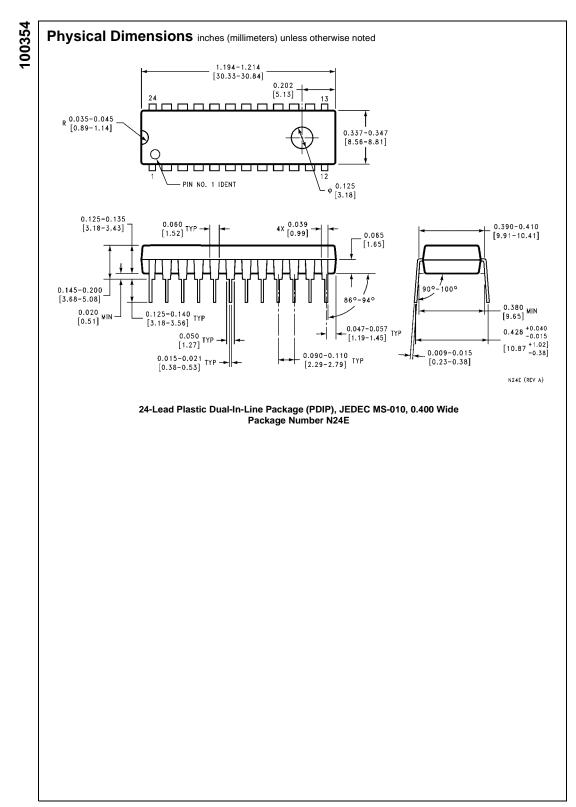
 $\mathsf{V}_{\mathsf{EE}}\text{=-4.2V}$ to –5.7V, $\mathsf{V}_{\mathsf{CC}}\text{=}$ $\mathsf{V}_{\mathsf{CCA}}\text{=}$ GND, $\mathsf{T}_{\mathsf{C}}\text{=-40^\circC}$ to +85°C

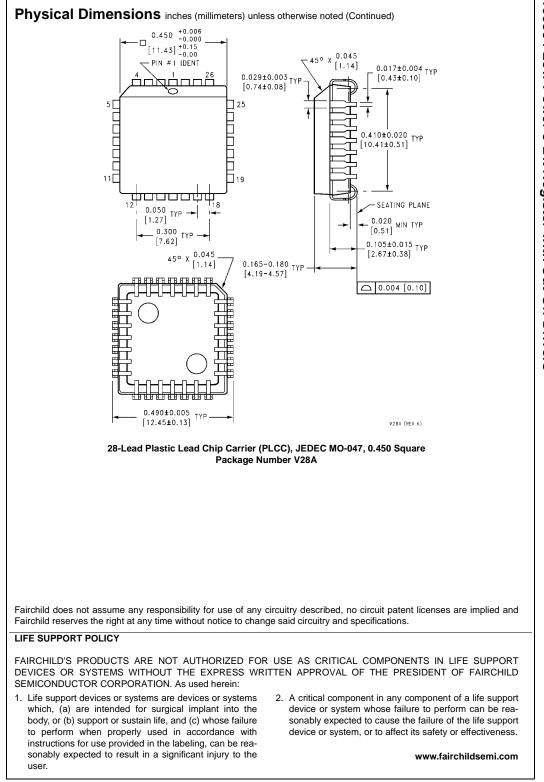
Symbol	Parameter	T _C = -	T _C = -40°C		$T_C = 0^\circ \text{ to } +85^\circ C$		Conditions			
Oymbol		Min	Max	Min	Max	Units	Conditions			
V _{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	V _{IN} =V _{IH} (Max)	Loading with		
V _{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	IIIV	or V _{IL} (Min)	50 Ω to –2.0V		
V _{OHC}	Output HIGH Voltage	-1095		-1035		mV	V _{IN} = V _{IH} (Min) Loading w			
V _{OLC}	Output LOW Voltage		-1565		-1610	mv	or V _{IL} (Max)	50 Ω to –2.0V		
V _{OLZ}	Cutoff LOW Voltage		-1900		-1950	mV	V _{IN} = V _{IH} (Min)	OEN = HIGH		
							or V _{IL} (Max)			
VIH	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal			
							for All Inputs			
V _{IL}	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal			
							for All Inputs			
IIL	Input LOW Current	0.50		0.50		μA	$V_{IN} = V_{IL}$ (Min)			
I _{IH}	Input HIGH Current		240		240	μA	$V_{IN} = V_{IH}$ (Max)			
I _{EE}	Power Supply Current						Inputs Open			
		-202	-105	-202	-105	mA	$V_{EE} = -4.2V$ to $-4.2V$	3V		
		-209	-105	-209	-105		$V_{EE} = -4.2V$ to -5.7	7V		


Note 7: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PLCC AC Electrical Characteristics


 V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND


Symbol	Parameter	T _C =	–40°C	$T_C = +25^{\circ}C$		$T_C = +85^{\circ}C$		Units	Conditions
	Faranieter	Min	Max	Min	Max	Min	Max	Units	conditions
f _{MAX}	Toggle Frequency	250		250		250		MHz	Figures 1, 4
t _{PLH}	Propagation Delay	1.40	2.80	1.40	2.80	1.50	2.90	ns	Figures 1, 4
t _{PHL}	CP to Output	1.40	2.80	1.40	2.80	1.50	2.90	ns	(Note 8)
t _{PZH}	Propagation Delay	1.50	4.10	1.60	4.00	1.60	4.00	ns	Figures 3, 5
t _{PHZ}	OEN to Output	1.00	2.50	1.00	2.50	1.00	2.50	115	(Note 8)
t _{TLH}	Transition Time	0.45	1.90	0.45	1.90	0.45	1.90	ns	Figures 1, 4
t _{THL}	20% to 80%, 80% to 20%	0.43	1.90	0.45	1.90	0.45	1.50	115	rigules 1, 4
t _S	Setup Time								
	D _n	1.00		1.00		1.00			
	CEN (Disable Time)	0.30		0.30		0.30		ns	Figures 2, 5
	CEN (Release Time)	1.00		1.00		1.00			
t _H	Hold Time	0.00		0.00		0.00		ns	Figures 1, 6
	[[0.00		0.00		0.00		115	rigules 1, 0
t _{PW} (H)	Pulse Width High	2.00		2.00		2.00		ns	Figures 1, 4


Note 8: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

6

